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Infrared spectrum of carbon dioxide
In 1896, physicist Svante Arrhenius published an article highlighting the climatic impact of carbon

dioxide (CO2), whose vibrations absorb part of the black body radiation emitted by the Earth. A few
years later, however, his theory was challenged by Knut Ångström, who argued that the atmosphere
is already completely opaque to the infrared wavelength absorbed by CO2. A variant of this argument
is still used today by climate change deniers. The argument put forward is that the concentration of
CO2 already present in the atmosphere is sufficient to absorb all the radiation emitted by the Earth
at the vibration frequency of the molecule, so that a further increase in CO2 will have no consequence
on the climate. While this claim is obviously erroneous, its refutation requires the use of a radiative
transfer model of the atmosphere based on precise knowledge of the shape of the infrared absorption
spectrum of CO2. This is the spectrum that will be studied in the following.

The interaction between a CO2 molecule and the oscillating electric field E⃗(t) = E⃗0 cosωt associated
with an infrared radiation of angular frequency ω can be treated using time-dependent perturbation
theory. It is recalled that this interaction can give rise to a transition between an initial state |i⟩ and a
final state |f⟩, provided that the frequency ω is very close to the transition frequency ωfi = (Ef−Ei)/ℏ.
The transition probability can then be written as

Pi→f ∝ | ⟨f | ˆ⃗µ · E⃗0 |i⟩ |2, (1)

where ˆ⃗µ is the electric dipole operator of the molecule.

Exercise 1
CO2 Vibration modes

CO2 is a linear triatomic molecule composed of two oxygen atoms (isotope 16
8O) located on either

side of the central carbon atom (isotope 12
6C), as shown in Fig. 1(a). Since the nuclear spins of the

considered isotopes are zero and the molecule is assumed to always be in its electronic ground state,
only the motion of the nuclei will be taken into account. The center of mass of the molecule, whose
motion is irrelevant for infrared absorption, will be assumed to be stationary and positioned at the
origin of the coordinate system. Finally, for this and the following exercise, the molecule will be assumed
to be oriented along the z axis.
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Figure 1 – (a) Equilibrium structure of the CO2 molecule. (b) Bending mode along
the x axis, with angular frequency ω1. (c) Bending mode along the y axis, with an-
gular frequency ω1. (d) Symmetric stretching mode (along the z axis), with angular
frequency ω2. (e) Antisymmetric stretching mode (along the z axis), with angular
frequency ω3.

Under these assumptions, the motion of the nuclei can be decomposed into four independent vibra-
tional modes, shown in Fig. 1, each described using a harmonic oscillator. First, there are two bending
modes : one along the x axis (b) and the other along the y axis (c), both associated with a two-
dimensional harmonic oscillator of angular frequency ω1. Second, there are two stretching modes, in
which the nuclei move along the z axis : the symmetric stretching mode (d), where the carbon nucleus
remains stationary while the two oxygen nuclei oscillate symmetrically about the origin. This mode
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is described as a one-dimensional harmonic oscillator with angular frequency ω2. Finally, there is the
antisymmetric stretching mode (e), in which the carbon nucleus moves in the opposite direction to
the two oxygen nuclei. This mode is described as a one-dimensional harmonic oscillator with angular
frequency ω3. The vibrational frequencies are given as ω1/(2π) ≈ 20.0 THz, ω2/(2π) ≈ 40.1 THz, and
ω3/(2π) ≈ 70.4 THz, where 1 THz = 1012 Hz.

1. We consider initially only the antisymmetric stretching mode, with angular frequency ω3. The
stretching is characterized by the real quantity ζ = zc − (z1 + z2)/2, where zc is the coordinate of the
carbon nucleus, and z1 and z2 are the coordinates of the oxygen nuclei. We work within the state space
E3 = L2(R) and introduce the annihilation operator

â3 =
1√
2

(√
mrω3

ℏ
ζ̂ + i

p̂ζ√
mrℏω3

)
, (2)

where ζ̂ and p̂ζ are the position and momentum observables. The quantity mr = 2mOmC/(2mO+mC)
is the reduced mass, with mO and mC being the masses of the oxygen and carbon nuclei, respectively.
The Hamiltonian associated with this vibrational mode can then be written as :

Ĥ3 = ℏω3

(
â†3â3 +

Î

2

)
, (3)

where Î is the identity operator. The eigenstates of Ĥ3 will be denoted as |n⟩, with n ∈ N. Recall the
values and degeneracies of the energy levels.
We have En = (n+1/2)ℏω3, where n ∈ N. For a one-dimensional harmonic oscillator, the energy levels
are non-degenerate.

2. Using a numerical application, show that for this mode it is justified to consider that only the
ground state |0⟩ is populated at the temperature of the Earth’s atmosphere (T = 288K).
Let us set kBT = ℏωT , where ωT is a frequency characteristic of thermal agitation. We obtain
ωT /(2π) = kBT/h ≈ 6 THz, which is very small compared to the transition frequency ω3/(2π) ≈
70 THz. We can therefore deduce that the probability of thermal excitation to the n = 1 level will be
very low. More precisely, the Boltzmann factor is written as

exp

(
−E1 − E0

kBT

)
= exp

(
− ω3

ωT

)
≈ exp

(
−70.4

6

)
≈ 8× 10−6 ≪ 1.

We can therefore consider that only the ground state is populated at the temperature of the Earth’s
atmosphere.

3. Show that the dipole operator associated with the antisymmetric stretching mode reads

ˆ⃗µ = µ3

(
â3 + â†3

)
u⃗z, (4)

where u⃗z is a unit vector along the z axis. Express the real quantity µ3 in terms of the problem’s
parameters and the partial charge δq carried by the carbon atom.
Since the molecule is electrically neutral, we can state that each oxygen atom carries a charge of −δq/2.
We thus have

µ⃗ =

(
δqzc −

δq

2
z1 −

δq

2
z2

)
u⃗z = δq ζu⃗z.

Furthermore,

â3 + â†3 =

√
2mrω3

ℏ
ζ̂,

which yields

ˆ⃗µ = δq

√
ℏ

2mrω3

(
â3 + â†3

)
u⃗z.

We thus obtain eq. 4, with µ3 = δq
√

ℏ/(2mrω3).
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4. Using eq. 1, identify the only transition associated with the antisymmetric stretching mode that
can be excited by the infrared field and provide the corresponding transition frequency.
Knowing that only the state |0⟩ is initially populated, let us calculate the matrix element enabling a
transition to state |n⟩. We have

⟨n| ˆ⃗µ · E⃗0 |0⟩ = µ3E0z ⟨n|
(
â3 + â†3

)
|0⟩ = µ3E0z ⟨n|1⟩ .

It follows that only state |1⟩ can be excited from state |0⟩, the corresponding transition frequency being
(E1 − E0)/ℏ = ω3.

5. We now consider the symmetric stretching mode. What can be said about the dipole observable ˆ⃗µ
in this case ?
In the case of the symmetric mode, we have ẑ1 + ẑ2 = 0, while ẑc = 0 (since the center of mass is
stationary and the carbon atom remains stationary at the origin). We deduce that the dipole observable
is zero.

6. Comment Fig. 2, which represents the infrared absorption spectrum of CO2. Among the 4 vibration
modes considered above, which are relevant in the context of the climate impact of CO2 ?
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Figure 2 – Absorption spectrum of CO2 in the mid-infrared range, for a CO2 concen-
tration of 426 ppm in air at atmospheric pressure and at a temperature of T = 288K.
The dashed line represents, in arbitrary units, the black body emission spectrum for
T = 288K.

A strong infrared absorption is observed at frequency ω3/(2π) ≈ 70 THz, which can thus be attributed
to the antisymmetric stretching mode. Absorption is also observed at frequency ω1/(2π) ≈ 20 THz,
which can be attributed to the bending motion associated with a dipole oscillating in the xy plane,
induced by the components of the infrared field oscillating in this plane. As expected, no absorption
is observed at the frequency of the symmetric stretching mode ω2/(2π) ≈ 40 THz. Indeed, since the
dipole is zero, the transition probability is also zero, and this vibration mode is therefore not coupled to
infrared radiation. As the mode with frequency ω3 is beyond the Earth’s black body emission spectrum,
we can conclude that only the two bending modes, with angular frequency ω1, will have an impact on
the climate.

7. It can be read from Fig. 2 that absorption α at angular frequency ω1 is approximately 4.8 m−1.
Knowing that the resulting transmission after propagation over a distance L is given by exp(−αL),
deduce the value of L required for the photon transmission probability to be less than 10−6. Comment
on this result.
The required length must be greater than − ln(10−6)/4.8 ≈ 2.9 m. This distance being much smaller
than the thickness of the atmosphere, we can conclude that the atmosphere is indeed already opaque
at this frequency. However, it is important to consider the entire spectrum to draw conclusions about
the climate effect of an increase in CO2 concentration.

Exercice 2
Fermi Resonance

This exercise deals with the bending motion shown in Fig. 1(b) and (c).
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1. Two-dimensional harmonic oscillator
Given the small value of the bending angle, we can assume that the nuclei move within horizontal
planes. Let (x, y) represent the coordinates of the carbon nucleus relative to the projection of the two
oxygen nuclei in the xy-plane. We introduce the observables x̂ and ŷ associated with these coordinates,
as well as the corresponding momentum observables p̂x and p̂y. Operator âx (respectively ây) can then
be constructed using an equation similar to eq. 2, by replacing ω3 with ω1, and substituting ζ̂ and p̂ζ
with x̂ and p̂x (respectively ŷ and p̂y). We work in the state space E1 = L2(R2) = L2(R) ⊗ L2(R),
and the Hamiltonian of the system is expressed as Ĥ1 = Ĥx + Ĥy, where Ĥx = ℏω1

(
â†xâx + Î/2

)
and

Ĥy = ℏω1

(
â†yây + Î/2

)
.

1.1 Explain why Ĥx and Ĥy can be co-diagonalized, and show that the eigenvalues of Ĥ1 are En =
(n+ 1)ℏω1, with n ∈ N. Specify the associated denegeracies.
Ĥx and Ĥy act in two different spaces and therefore commute with each other. The tensorial basis
{|nx⟩ ⊗ |ny⟩}, constructed from the eigenstates of the one-dimensional harmonic oscillator, is thus
a common eigenbasis of these two operators, and therefore of Ĥ1. We have :

Ĥ1 |nx⟩ ⊗ |ny⟩ = (nx + 1/2 + ny + 1/2)ℏω1 |nx⟩ ⊗ |ny⟩ ,

where nx and ny are integers. We thus obtain the announced result, with n = nx+ny. For a given
value of n, we have nx ∈ {0, 1, . . . , n} and ny = n− nx, which gives us n+ 1 independent states.
The degeneracy of En is therefore equal to n+ 1.

1.2 Let us introduce operators â± = (âx ∓ iây)/
√
2, which commute with each other and, along with

their adjoints, satisfy the usual commutation relations of annihilation and creation operators as-
sociated with a one-dimensional harmonic oscillator. Show that Ĥ1 = ℏω1

(
N̂+ + N̂− + Î

)
, where

N̂± = â†±â±. Recover with this alternative method the eigenvalues of Ĥ1 and their degeneracies.
We have

N̂± =
1

2
(â†x ± iâ†y)(âx ∓ iây) =

1

2

(
â†xâx + â†yây

)
± i

2

(
â†yâx − â†xây

)
.

It follows that N̂+ + N̂− = â†xâx + â†yây, which allows us to establish the expression for Ĥ1 as
announced. We then deduce that the eigenvalues are of the form (n+ 1)ℏω1, where n = n+ + n−,
which confirms the announced degeneracy since n+ ∈ {0, 1, · · · , n} and n− = n− n+.

1.3 We note K̂ = ℏ(N̂+ − N̂−) the projection of the angular momentum along the z-axis of the
molecule. Explain the physical reason why K̂ commutes with Ĥ1.
Since the system is invariant under rotation around the z-axis, we have [K̂, Ĥ1] = 0.

1.4 We consider the common eigenbasis of the ECOC {Ĥ1, K̂} for the eigenvalues (n+ 1)ℏω1 and kℏ,
which will simply be denoted as {|n, k⟩} throughout the rest of this text. Show that |n, k⟩ is an
eigenvector of N̂+ and N̂− for the eigenvalues n+ and n−, which will be expressed in terms of n
and k.
We have (N̂++N̂−) |n, k⟩ = n |n, k⟩ and (N̂+−N̂−) |n, k⟩ = k |n, k⟩. By taking linear combinations
of these expressions, we obtain

N̂+ |n, k⟩ = n+ k

2
|n, k⟩ ,

N̂− |n, k⟩ = n− k

2
|n, k⟩ ,

which establishes the desired result with n± = n±k
2 .

1.5 Show that k is an integer with the same parity as n and belonging to the interval [−n, n].
It follows that k = n+ − n− = 2n+ − n. Since n+ is an integer between 0 and n, it follows that k
is an integer between −n and n, with the same parity as n because n+ k = 2n+ is even.

1.6 Show that â± |n, k⟩ ∝ |n− 1, k ∓ 1⟩ and â†± |n, k⟩ ∝ |n+ 1, k ± 1⟩.
We know that |n, k⟩ is an eigenvector of the observables N̂± with eigenvalues n± = (n ± k)/2.
Therefore, â+ |n, k⟩ is an eigenvector of N̂+ and N̂− with eigenvalues n+− 1 and n−, which means
that n = n+ + n− decreases by 1, as does k = n+ − n−. Thus, â+ |n, k⟩ is an eigenvector of
N̂ = N̂+ + N̂− and K̂ with eigenvalues n − 1 and k − 1, respectively. It is therefore proportional
to |n− 1, k − 1⟩. We can apply the same reasoning for the action of â−, which swaps the roles
of n+ and n−. The number n = n+ + n− still decreases by one unit, while k increases by 1.
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Hence, we obtain a vector proportional to |n− 1, k + 1⟩. Regarding the action of â†±, the number
n± is incremented, which increments n and adds ±1 to k = n+ − n−. We thus obtain the desired
relations.
We could also write |n, k⟩ = |n+ = (n+ k)/2, n− = (n− k)/2⟩ and then

â+ |n, k⟩ = â± |n+ =
n+ k

2
, n− =

n− k

2
⟩

=

√
n+ k

2
|n+ =

n+ k

2
− 1, n− =

n− k

2
⟩

=

√
n+ k

2
|n− 1, k − 1⟩ ,

and so on.
1.7 In the rest of this exercise, we assume that the infrared field is polarized along the x axis. We

consider the Cartesian component along this axis of the dipole operator, µ̂x = δq x̂. Express µ̂x in
terms of the operators â± and their adjoints, and then show that if the system is initially in the
state |n, k⟩, the infrared field can induce a transition to final state |n′, k′⟩ only if n′ = n ± 1 and
k′ = k ± 1.
We will say that the transition follows the selection rule ∆n = ±1 and ∆k = ±1.
We have

âx + â†x =

√
2mrω1

ℏ
x̂

or âx = (â+ + â−)/
√
2. From this, we deduce

µ̂x = δq

√
ℏ

4mrω1

(
â+ + â− + â†+ + â†−

)
Using the result from the previous question, we deduce that the matrix element ⟨n′, k′| µ̂x |n, k⟩
can only be non-zero if n′ = n± 1 and k′ = k± 1, which establishes the announced selection rule.

2. Anharmonic coupling between vibrational modes
We are interested in the anharmonic coupling between the bending modes and the symmetric stretching
mode, a coupling that is exacerbated by what is called a Fermi resonance. This results from the near-
equality between 2ω1/(2π) = 40.0 THz and ω2/(2π) = 40.1 THz. For simplicity, we will replace ω2 by
2ω1 in this part. Moreover, the antisymmetric stretching mode will not be considered, which amounts
to working in the space E1⊗E2 = L2(R2)⊗L2(R). We will use the tensorial basis {|n1, k;n2⟩ = |n1, k⟩⊗
|n2⟩}, where {|n1, k⟩} is the common eigenbasis of Ĥ1 and K̂ introduced in the previous part (with
k ∈ {−n1,−n1+2, · · · , n1}), and where {|n2⟩} is the eigenbasis of the Hamiltonian Ĥ2 of the harmonic
oscillator with frequency ω2 = 2ω1 associated with the symmetric stretching mode. The anharmonic
coupling will be taken into account with an additional term Ŵ to be added to the unperturbed
Hamiltonian Ĥ1 + Ĥ2. The effect of Ŵ will be treated at first order in time-independent perturbation
theory. By symmetry, we will assume that all diagonal terms of the form ⟨n1, k;n2| Ŵ |n1, k;n2⟩ are
zero.

2.1 Write the action of Ĥ1+ Ĥ2 on |n1, k;n2⟩, then express the energy of the first three levels in terms
of ℏω1 (in the absence of perturbation). For each level, provide the vectors of the tensorial basis
that generate the corresponding eigenspace.
We have(
Ĥ1 + Ĥ2

)
|n1, k;n2⟩ = ((n1 + 1)ℏω1 + (n2 + 1/2)ℏω2) |n1, k;n2⟩ = (n1 + 2n2 + 2)ℏω1 |n1, k;n2⟩ .

The ground state thus has energy E0 = 2ℏω1. It is non-degenerate and the corresponding eigen-
vector is |0, 0; 0⟩. The first excited state has energy E0 + ℏω1. It is doubly degenerate and has
the eigenbasis {|1,−1; 0⟩ , |1, 1; 0⟩}. The second excited state has energy E0 + 2ℏω1. It is fourfold
degenerate and has the eigenbasis {|2,−2; 0⟩ , |2, 2; 0⟩ , |2, 0; 0⟩ , |0, 0; 1⟩}.

2.2 By proceeding as in question 2 of exercise 1, show that the probability of finding the system in the
first excited state is not completely negligible.
Since the energy difference between the first excited state and the ground state is ℏω1, the Boltz-
mann factor now reads

exp

(
− ω1

ωT

)
≈ exp

(
−20

6

)
≈ 3.6× 10−2,
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which is no longer negligible.
2.3 Explain why operator K̂ commutes with Ŵ .

The observable K̂ corresponds to the total angular momentum of the system (since there is no
contribution to the angular momentum from the stretching mode, whose state is obviously un-
changed by rotation). Due to the rotational invariance of the system, it can be deduced that K̂
commutes with Ŵ .

2.4 Calculate ⟨n1, k;n2| [Ŵ , K̂] |n′1, k′;n′2⟩ in two different ways, and then deduce that the matrix
elements ⟨n1, k;n2| Ŵ |n′1, k′;n′2⟩ are zero whenever k ̸= k′.
We have

⟨n1, k;n2| [Ŵ , K̂] |n′1, k′;n′2⟩ = ⟨n1, k;n2|
(
Ŵk′ − kŴ

)
|n′1, k′;n′2⟩

= (k − k′) ⟨n1, k;n2| Ŵ |n′1, k′;n′2⟩ .

Moreover, the quantity above is obviously zero since [Ŵ , K̂] = 0. We then deduce that the matrix
element of Ŵ is zero whenever k ̸= k′.

2.5 Show that Ŵ has no effect on the first two energy levels (as first order).
The ground state is non-degenerate. The shift in energy to first order is therefore simply equal to
⟨0, 0; 0| Ŵ |0, 0; 0⟩, which is zero by hypothesis.
The first excited state is doubly degenerate. We must therefore diagonalize the restriction of Ŵ to
the space spanned by |1, 1; 0⟩ and |1,−1; 0⟩. The diagonal matrix elements are zero by hypothesis,
while the off-diagonal matrix elements ⟨1, 1; 0| Ŵ |1,−1; 0⟩ are zero according to the result from
the previous question. Therefore, the restriction of Ŵ is zero, and the perturbation has no effect
on this level.

2.6 We now consider the effect of Ŵ on the third energy level, still to first order in perturbation
theory. By appropriately ordering the basis vectors, show that the matrix to be considered is
block-diagonal, then determine the new position of the energy levels as well as the corresponding
eigenbasis. We will denote ℏΩ = ⟨2, 0; 0| Ŵ |0, 0; 1⟩, a quantity which will be assumed to be real.
According to question 2.4, the only non-zero matrix elements of the restriction of Ŵ are those
connecting states with the same value of k. Therefore, the states corresponding to k = ±2
are not coupled to the others. We deduce that the matrix of the restriction of Ŵ in the basis
{|2,−2; 0⟩ , |2, 2; 0⟩ , |2, 0; 0⟩ , |0, 0; 1⟩} is given by

Ŵ =


0 0 0 0
0 0 0 0
0 0 0 ℏΩ
0 0 ℏΩ 0

 .

This is indeed a block-diagonal matrix. The first two states, |2,±2; 0⟩, are therefore unaffected by
the perturbation, with a total energy remaining equal to E0 + 2ℏω1. The diagonalization of the
remaining 2× 2 matrix gives the two states

|±⟩ = |2, 0; 0⟩ ± |0, 0; 1⟩√
2

,

with a total energy of E0 + 2ℏω1 ± ℏΩ.
2.7 Represent on a diagram the position of the states discussed in 2.5 and 2.6, taking into account the

effect of the perturbation Ŵ . For each state, the horizontal position of the level will correspond
to the value of k, while the vertical position of the level will correspond to its energy. Using the
selection rules established in 1.7, represent with arrows the transitions allowed under the action of
the infrared field.
We obtain the diagram shown below. According to what we have seen in 1.7, the allowed infrared
transitions correspond to ∆n = ±1 and ∆k = ±1.
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2.8 The absorption spectrum of CO2 near the frequency ω1 is shown in Fig. 3. Here, we focus only

on the main lines indicated by vertical dashed lines (the interpretation of the much narrower lines
appearing on either side of these main lines will be addressed in the next exercise). Using the
energy level diagram constructed in the previous question, interpret the physical origin of the lines
observed at 20, 18.5, and 21.6 THz. Does the order of magnitude of the amplitude of the latter
two lines seem consistent with the theoretical model ?
The two new transitions at ω1 ± Ω (shown as dashed lines in the above diagram) explain the
absorption lines located symmetrically on either side of the transition at ω1. We verify that the
frequency differences 20.01− 18.52 = 1.49 THz and 21.6− 20.01 = 1.59 THz are nearly identical,
consistent with the expected frequencies at ω1 ± Ω. From this, we deduce Ω/(2π) ≈ 1.55 THz.
Regarding the amplitude of the lines, the graph shows an attenuation factor of 0.020 (resp. 0.017)
for the left (resp. right) line. Theoretically, according to question 2.2, the Boltzmann factor is
exp(−20/6) ≈ 0.036. Within a factor of 2, this agrees well with the attenuation of the lateral lines
by about two orders of magnitude.
To be more thorough, the line amplitude must be multiplied by 2 because there are twice as many
initial states available (k = ±1), then divided by 2 because there are half as many final states
available (only k = 0 instead of k = ±1). It must then be multiplied by 2 because the matrix
elements of the harmonic oscillator scale with

√
n, and finally divided by 2 because the final state

is mixed with the symmetric stretching mode that does not couple to the light. Ultimately, these
four factors of 2 cancel each other out.

2.9 Propose a hypothesis to qualitatively explain the physical origin of the lines observed at 16.3 and
23.7 THz.
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Figure 3 – Semi-logarithmic plot of the absorption spectrum of CO2 in the vicinity
of frequency ω1.

Similarly, the energy level E0 + 3ℏω1 (initially sixfold degenerate) will also split, as shown below,
with ℏΩ′ = ⟨3, 1; 0| Ŵ |1, 1; 1⟩. Additional lines with frequencies ω1 ± Ω′, ω1 ± (Ω′ − Ω), and
ω1 ± (Ω′ +Ω) are expected. Given the Boltzmann factor, now equal to exp(−40/6) ≈ 10−3, these
lines will be even less intense. It is expected that only the farthest lines, at frequencies ω1±(Ω′+Ω),
will be visible (at 16.32 and 23.73 THz), while the other four lines will be buried in the rotational
background. The measured values for (Ω+Ω′)/(2π) are nearly identical on either side, at 3.69 and
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3.72 THz, leading to Ω′/Ω ≈ 1.4.
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Knowing this value of Ω′, the lines at ω1 ± Ω′ can be identified at 17.8 and 22.2 THz, slightly
emerging from the rotational background.

Exercice 3
Ro-vibrational spectrum of CO2

The purpose of this exercise is to take into account the rotational motion of the CO2 molecule, in
order to achieve a complete description of its infrared spectrum.

1. Rigid rotor model
We first consider the rigid rotor model, which disregards the vibrations of the molecule. The only
remaining degrees of freedom are then associated with the orientation of the molecule in space, described
using spherical coordinates θ and φ as shown in Fig. 4. The axis of the molecule is thus represented
by the unit vector u⃗, defined by the usual expression :

u⃗ =

∣∣∣∣∣∣
sin θ cosφ
sin θ sinφ
cos θ

(5)

O

O

C C

O

O

Figure 4 – Representation of the CO2 molecule, assumed to be a rigid rotor whose
orientation is determined by the colatitude θ ∈ [0, π] and the longitude φ ∈ [0, 2π[.

We consider the Hilbert space Erot, where the state of the system is entirely determined by a ket
|Y ⟩ ∈ Erot associated with the angular wavefunction Y (θ, φ). The inner product reads

⟨Y1|Y2⟩ =
∫ π

0

∫ 2π

0
Y ∗
1 (θ, φ)Y2(θ, φ) sin θ dθdφ. (6)

The Hamiltonian associated with the rotational motion of the molecule is written as

Ĥrot =
L̂2

2I
= ℏB

L̂2

ℏ2
, (7)

where ˆ⃗
L is the angular momentum operator and I is the moment of inertia of the molecule. The

quantity B = ℏ/(2I) is called the rotational constant of the molecule.

1.1 In the following, we will use the eigenbasis {|ℓ,m⟩} of L̂2 and L̂z, consisting of the spherical
harmonics Yℓ,m(θ, φ), with ℓ ∈ N. Recall the eigenvalues of L̂2 as well as the possible values of m.
We have L̂2 |ℓ,m⟩ = ℓ(ℓ+1)ℏ2 |ℓ,m⟩, where ℓ is an integer. The possible values of m are the 2ℓ+1
integers between −ℓ and +ℓ.
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1.2 Using the rotational constant B, express the energy values Eℓ of the system, and the associated
degeneracies.
We have

Eℓ = ℓ(ℓ+ 1)ℏB,
with ℓ integer. The degeneracy of each level is equal to 2ℓ+ 1.

1.3 Show in two different ways that the oxygen nuclei considered here are bosons.
The oxygen 16 nucleus contains 16 fermions, which is an even number. It is therefore a boson.

1.4 Exchanging the two nuclei is equivalent to performing a central symmetry with respect to the
origin, which is described by the parity operator Π̂. Knowing that Π̂ |ℓ,m⟩ = (−1)ℓ |ℓ,m⟩, what
can we deduce about the allowed values of ℓ when taking into account the indistinguishable nature
of the oxygen nuclei ?
According to the symmetrization postulate, we must restrict ourselves to state vectors unchanged
by the exchange of the two nuclei, i.e. states for which ℓ is even.

1.5 In the context of the rigid rotor model, do you think the CO2 molecule can absorb electromagnetic
radiation ?
If we note r0 the length of the CO bond, we can write the dipole operator according to the
expression ˆ⃗µ = δq× 0− (δq/2)r0 ˆ⃗u+ (δq/2)r0 ˆ⃗u = 0. The symmetry of the problem means that the
dipole operator is zero. According to eq. 1, the probability of absorption is therefore zero.

2. Ro-vibrational spectrum associated with the antisymmetric stretching mode
We now combine rotational and vibrational motions. For sake of simplicity, we will consider just one
mode of vibration, namely the antisymmetric stretching mode with frequency ω3. We are therefore in
the state space E3⊗Erot, where E3 = L2(R). The vibrational mode considered is that shown in Fig. 1(e),
except that the molecule is now aligned according to the vector u⃗ introduced above. Consequently, eq. 4
expressing the dipole operator must be replaced by

ˆ⃗µ = µ3(â3 + â†3)
ˆ⃗u, (8)

where â3 acts in E3 while ˆ⃗u is now an observable acting in Erot. The Hamiltonian of the system is
written Ĥ = Ĥ3 + Ĥrot, where Ĥ3 is defined by eq. 3 and Ĥrot is defined by eq. 7.
2.1 Write the energy value En,ℓ associated with eigenstate |n⟩ ⊗ |ℓ,m⟩.

We have
En,ℓ = (n+ 1/2)ℏω3 + ℓ(ℓ+ 1)ℏB.

2.2 Recall without calculation the parity of the eigenfunctions of the one-dimensional harmonic oscil-
lator, then deduce the action of the operator exchanging the two oxygen nuclei on state |n⟩⊗|ℓ,m⟩.
We know that the eigenfunctions of the one-dimensional harmonic oscillator are alternately even
and odd. As shown in the diagram below, exchanging the two oxygen nuclei is equivalent to
changing u⃗ to −u⃗ and then changing ζ and −ζ.

We deduce
P̂12 |n⟩ ⊗ |ℓ,m⟩ = (−1)n |n⟩ ⊗ (−1)ℓ |ℓ,m⟩ = (−1)n+ℓ |n⟩ ⊗ |ℓ,m⟩ .

2.3 Deduce the permitted values for ℓ depending on the values taken by n.
As above, we must have Π̂ |ψ⟩ = |ψ⟩ for any physically acceptable state |ψ⟩. We deduce that n+ ℓ
must be even for the state to be physically acceptable. The allowed values for ℓ are therefore even
numbers when n is even, and odd numbers when n is odd.
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2.4 It is assumed that at room temperature the system can be randomly in one of the states |0⟩⊗|ℓ,m⟩,
where ℓ satisfies the condition obtained in the previous question. Calculate the matrix element
⟨n′| ⊗ ⟨ℓ′,m′| ˆ⃗µ · E⃗0 |0⟩ ⊗ |ℓ,m⟩, where it will be assumed that the electric field E⃗0 is aligned along
the z axis, then identify the |n′⟩ ⊗ |ℓ′,m′⟩ states accessible following interaction with infrared
radiation.
You will need to use the relation

Yℓ,m(θ) cos θ = αℓ,mYℓ+1,m(θ) + βℓ,mYℓ−1,m(θ), (9)

where αℓ,m and βℓ,m are known real coefficients whose explicit expression as a function of ℓ and m
will not be necessary. We obviously have βℓ,ℓ = 0.
We have ˆ⃗µ · E⃗0 = E0µ̂z = µ3E0(â3 + â†3)ûz, i.e.

ˆ⃗µ · E⃗0 |0⟩ ⊗ |ℓ,m⟩ = µ3E0 |1⟩ ⊗ ûz |ℓ,m⟩ .

The matrix element we are looking for is the scalar product ⟨n|1⟩, which means n = 1. Furthermore,
we obtain the matrix element

⟨ℓ′,m′| ûz |ℓ′,m⟩ =
∫ π

0

∫ 2π

0
Yℓ′,m′(θ) cos θYℓ′,m(θ) sin θdθdφ

= αℓ,m ⟨ℓ′,m′|ℓ+ 1,m⟩+ βℓ,m ⟨ℓ′,m′|ℓ− 1,m⟩ .

As the spherical harmonics are orthogonal, we deduce that m′ = m and that ℓ′ = ℓ+1 or ℓ−1, the
matrix element being αℓ,m or βℓ,m respectively. We deduce that the only non-zero matrix elements
are

⟨1| ⊗ ⟨ℓ+ 1,m| ˆ⃗µ · E⃗0 |0⟩ ⊗ |ℓ,m⟩ = µ3E0αℓ,m

and
⟨1| ⊗ ⟨ℓ− 1,m| ˆ⃗µ · E⃗0 |0⟩ ⊗ |ℓ,m⟩ = µ3E0βℓ,m.

2.5 Express as a function of ω3 and B the corresponding energy differences, En′,ℓ′ −E0,ℓ, according to
the allowed values of ∆ℓ = ℓ′ − ℓ.
The permitted values of ∆ℓ are ±1. For ∆ℓ = +1, we obtain

E1,ℓ+1 − E0,ℓ = ℏω3 + ℏB ((ℓ+ 1)(ℓ+ 2)− ℓ(ℓ+ 1)) = ℏω3 + 2(ℓ+ 1)ℏB,

while for ∆ℓ = −1 (and ℓ ≥ 2), we get

E1,ℓ−1 − E0,ℓ = ℏω3 + ℏB ((ℓ− 1)ℓ− ℓ(ℓ+ 1)) = ℏω3 − 2ℓℏB.

2.6 Using the previous results, discuss the infrared spectrum shown in Fig. 5. You can
• explain qualitatively the general shape of the absorption spectrum,
• deduce from the spectrum the numerical values of B and the length of the CO bond,
• explain the growth and decay of the spectrum envelope away from the central frequency (assu-

ming for sake of simplicity that αℓ,m and βℓ,m are independent of ℓ and m),
• discuss features not predicted by the simplified theoretical model developed in this exercise.

We therefore expect to observe a series of evenly-spaced lines at a frequency above (resp. below)
ω3 when ∆ℓ = +1 (resp. −1). The expected transition frequencies for ∆ℓ = +1 are ω3+2(ℓ+1)B
with ℓ ∈ {0, 2, 4, · · · }, i.e. ω3 + 2B, ω3 + 6B, ω3 + 10B, and so on. Similarly, for ∆ℓ = −1 the
expected frequencies are ω3 − 2ℓB with ℓ ∈ {2, 4, · · · }, i.e. ω3 − 4B, ω3 − 8B, and so on. This is
exactly what we see on the figure, with lines regularly spaced by an amount equal to 4B (at least
for the first lines on either side of the central frequency).
To determine the spacing between absorption lines, we measure 247 (resp. 223) GHz for the first
5 periods below (resp. above) ω3. Taking the average and dividing by 5, we deduce a spacing
4B/(2π) of around 47 GHz, i.e. B/(2π) ≈ 11.8 GHz.
To determine the length r0 of the CO link, we can write I = 2mOr

2
0 and use the expression

B = ℏ/(2I) = ℏ/(4mOr
2
0). We deduce

r0 =

√
ℏ

4mOB
=

√
1.05× 10−34

4× 16× 1.67× 10−27 × 2π × 11.8× 109
≈ 115 pm.
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Figure 5 – Infrared absorption spectrum of CO2 near the frequency ω3.

According to the hypothesis proposed in the statement, the transition matrix elements are all iden-
tical. The amplitude of each absorption line is then simply proportional to the number of possible
initial states, i.e. the degeneracy 2ℓ+ 1, or |α|2, 5|α|2, 9|α|2, · · · for ω > ω3 and 5|β|2, 9|β|2, · · · for
ω < ω3. This affine variation in line amplitude with ω is perfectly verified on the figure up to ℓ = 8.
To account for the decay of the absorption spectrum for larger values of ℓ, the Boltzmann factor
exp(−(E0,ℓ−E0,0)/(kBT )) = exp(−ℓ(ℓ+1)B/ωT ) must be taken into account. For low values of ℓ,
this factor is close to 1 : for example, for ℓ = 8, we obtain exp(−8× 9× 11.5/6000) ≈ 0.87, which
explains the affine variation already discussed above. For ℓ ≫ 1, we can write ℓ ≈ |ω − ω3|/(2B)
and (E0,ℓ − E0,0)/ℏ ≈ ℓ2B ≈ (ω − ω3)

2/(4B). The result is

exp(−(E0,ℓ − E0,0)/(kBT )) ≈ exp

(
−(ω − ω3)

2

4BωT

)
,

i.e. a Gaussian distribution with standard deviation ∆ω/(2π) =
√
2BωT /(2π) ≈ 370 GHz. Taking

into account the degeneracy factor in 2ℓ+ 1 ∝ |ω − ω3|, we therefore expect a |ω − ω3| exp(−(ω −
ω3)

2/(2∆ω2)) distribution, which corresponds exactly to the observed function. This function is
expected to peak at |ω − ω3| = ∆ω, which is in excellent agreement with the observed value
(measured at approximately 390 GHz instead of 370 GHz).
Finally, we can see that the absorption lines are not quite equidistant for large ℓ values, with the
spacing decreasing as the frequency of the absorbed photon increases. To explain this discrepancy
with our model, we can put forward the hypothesis that the rotational constant (i.e. the moment
of inertia) may not be the same in the vibrational ground state as in the excited state.

3. Ro-vibrational spectrum associated with bending modes
This final section uses some of the results demonstrated in Exercise 2.

We now combine the rotational motion with the two bending modes of frequency ω1 (this time neglec-
ting the stretching modes). The theoretical treatment is considerably more complicated, since both
rotational and bending motions contribute to the total angular momentum ˆ⃗

L of the molecule. We
assume that ˆ⃗

L commutes with its projection K̂ =
ˆ⃗
L · ˆ⃗u = ˆ⃗u · ˆ⃗L along the u⃗ axis of the molecule. We also

admit that this projection corresponds to the angular momentum K̂ already studied in exercise 2. The
projection of the angular momentum in the plane perpendicular to the axis of the molecule is called
ˆ⃗
L⊥ =

ˆ⃗
L− K̂ ˆ⃗u. The Hamiltonian is now written

Ĥ = Ĥ1 + ℏB
L̂2
⊥

ℏ2
, (10)

where B is the rotational constant introduced above. The observables Ĥ1, K̂, L̂2 and L̂z commute with
each other and can be diagonalized in the common eigenbasis {|n, k; ℓ,m⟩}, with the same eigenvalues
as those obtained in part 1 of exercise 2 and part 1 of this exercise. However, given the more complex
motion of the molecule, the corresponding wave functions are no longer proportional to the spherical
harmonics Yℓ,m(θ, φ), so the selection rules established in 2.4 are modified. We admit that infrared
transitions are now possible for ∆ℓ = −1, 0, or + 1.
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3.1 Knowing that L̂2 = L̂2
⊥+ K̂2, show that |n, k; ℓ,m⟩ is an eigenvector of L̂2

⊥ for an eigenvalue to be
determined, then deduce the expression of the energy En,k,ℓ associated with Ĥ.
Knowing that L̂2

⊥ = L̂2 − K̂2, we can write

L̂2
⊥ |n; k, ℓ,m⟩ = (ℓ(ℓ+ 1)ℏ2 − (kℏ)2) |n; k, ℓ,m⟩ = (ℓ(ℓ+ 1)− k2)ℏ2 |n; k, ℓ,m⟩

We thus obtain
En,k,ℓ,m = (n+ 1) ℏω1 +

(
ℓ(ℓ+ 1)− k2

)
ℏB.

For the record, let us derive the commutation relations. Since observable ˆ⃗u is a vector observable,
it obeys the commutation relation [L̂i, ûj ] = iℏϵijkûk, where ϵijk is the Levi-Civita tensor. In
particular, we deduce [ûi, L̂j ûj ] = iℏϵijkûkûj = 0 (because ˆ⃗u × ˆ⃗u = 0). Furthermore, [L̂i, K̂] =

[L̂i, L̂j ûj ] = iℏϵijkL̂kuj + L̂jiℏϵijkuk = 0 and [K̂, ûi] = [Ljuj , ui] = iℏϵjikukuj = 0. The result is

ˆ⃗
L⊥ · K̂ ˆ⃗u =

ˆ⃗
L · K̂ ˆ⃗u− K̂ ˆ⃗u · K̂ ˆ⃗u =

ˆ⃗
L · ˆ⃗u K̂ − K̂2 ˆ⃗u2 = 0

and
K̂ ˆ⃗u · ˆ⃗L⊥ = K̂ ˆ⃗u · ˆ⃗L− K̂2 = 0.

We finally obtain L̂2 = (
ˆ⃗
L⊥ + K̂ ˆ⃗u)2 = L̂2

⊥ + K̂2.
3.2 The electric field associated with the infrared radiation is assumed to be polarized along the z

axis. Explain why µ̂z commutes with L̂z, then deduce that an infrared transition must respect the
selection rule ∆m = 0.
If the field is polarized along the z axis, the system will be invariant to rotation about the z axis.
In fact, it’s immediate that the observable µ̂z is invariant under the action of a rotation around the
z axis, and therefore commutes with L̂z. Similar to the reasoning already carried out in Exercise
2 (question 2.4), we deduce that the matrix elements of µ̂z can only couple states with the same
value of m, from which we derive the selection rule ∆m = 0 so that the matrix element involved
in eq. 1 is non-zero.

3.3 Consider a transition from state |0, 0; ℓ,m⟩ to state |1, k; ℓ+∆ℓ,m⟩. Recall the possible values
of k, then deduce the transition frequencies in the three cases ∆ℓ = −1, 0 or 1. Based on these
results, interpret the part of the spectrum shown in Fig. 3 located between 19 and 21 THz.
We saw in the previous exercise that for the level n = 1 of the harmonic oscillator we had k = ±1,
i.e. k2 = 1. From this we deduce :
For ∆ℓ = 1,

E1,±1,ℓ+1 − E0,0,ℓ = ℏω1 + ((ℓ+ 1)(ℓ+ 2)− 1− ℓ(ℓ+ 1)) ℏB = ℏω1 + (2ℓ+ 1)ℏB.

For ∆ℓ = 0,

E1,±1,ℓ − E0,0,ℓ = ℏω1 + (ℓ(ℓ+ 1)− 1− ℓ(ℓ+ 1)) ℏB = ℏω1 − ℏB.

For ∆ℓ = −1,

E1,±1,ℓ−1 − E0,0,ℓ = ℏω1 + ((ℓ− 1)ℓ− 1− ℓ(ℓ+ 1))ℏB = ℏω1 − (2ℓ+ 1)ℏB.

Apart from a slight frequency shift, the two cases ∆ℓ = ±1 are similar to what we had obtained for
the stretching mode, giving rise to the very narrow lines observed Fig. 3. There are 18 rotational
lines covering a spectral width of about 860 GHz. This yields a value similar to that already
obtained, B/(2π) ≈ 12 GHz, in agreement with our theoretical model. However, we now observe
a new transition corresponding to ∆ℓ = 0 close to ω1, independent of ℓ. This new transition is
much more intense, as all rotational states absorb at the same frequency. Our model is therefore
in excellent agreement with the central part of the absorption spectrum shown in Fig. 3

3.4 Using the results obtained in the previous exercise, explain the general shape of the spectrum
shown in Fig. 3.
From what we’ve just seen, each vibrational transition will give rise to a central line (∆ℓ = 0) and
rotational lines on either side (∆ℓ = ±1). The same applies to new transitions arising from Fermi
resonances. The result will be transitions from the |1;±1, ℓ,m⟩ state to the two possible linear
combinations between the |2; 0, ℓ+∆ℓ,m⟩ states and the |1⟩ state of the symmetric stretching
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mode, giving rise to the two intense transitions observed at 18.5 and 21.6 THz (for ∆ℓ = 0) but
also to the series of narrow lines on either side (for ∆ℓ = ±1). The same phenomenon is repeated
for the transition from n = 2 to n = 3, finally giving rise to the triangular-shaped spectrum (in
semi-logarithmic scale) seen in Fig. 3.

3.5 Figure 6 represents the infrared spectrum emitted by the Earth into space (also called spectral
emittance), calculated using a simplified radiative transfer model 1. The emission spectra, repre-
sented near ω1, are based on three models of CO2 absorption spectra : the first (a) only considers
the vibration at ω1, the second (b) includes molecular rotations but does not account for Fermi
resonance, while the third (c) uses the spectrum shown in Figure 3, which also includes the Fermi
resonance studied in Exercise 2. The additional absorbed power (called radiative forcing) due to a
doubling of the CO2 concentration according to these three models is respectively (a) 0.1, (b) 1.8,
and (c) 4.1 W/m2. Comment on these results using Figures 3 and 6 and then conclude.
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Figure 6 – Representation of the Earth’s spectral emittance near ω1 for a CO2

concentration of 280 ppm (dotted line) and 560 ppm (solid line). The theoretical
model considers only the vibration at ω1 (a), vibrations and rotations without (b) or
with (c) Fermi resonance. The dashed lines represent the blackbody emission spectrum
for temperatures of 288 K (upper curve) and 216 K (lower curve). The latter value
corresponds to the temperature at the top of the atmosphere.

In all three cases, two regions can be distinguished on the spectra shown in Fig. 6 : away from
the CO2 absorption band, the atmosphere is transparent, so that we observe blackbody radiation
emitted by the earth’s surface, at a temperature of 288 K. At the center of the absorption band,
the atmosphere is totally opaque, so that the radiation emitted to space is solely the result of
blackbody radiation emitted by the upper layer of the atmosphere, at a temperature of 216 K. In
case (a), the absorption spectrum - consisting of the single vibrational line at ω1 - is very narrow
and the radiative forcing is extremely weak, in line with this simplistic idea of a “saturation”
of the greenhouse effect. In case (b), the infrared spectrum of CO2 (the central region of the
spectrum shown in Fig. 3) is much broader, with a parabolic shape on a semi-logarithmic scale.
The atmosphere is now totally opaque over a band about 3 THz wide. When the CO2 concentration
is doubled, the absorption coefficient is doubled, so that the opacity band widens slightly, giving
rise to a significant increase in absorbed power. Finally, in case (c), the Fermi resonance gives rise to
a considerable broadening of the CO2 absorption spectrum, due to new transitions emanating from
excited vibrational levels. The spectrum takes on the triangular shape in semi-logarithmic scale
shown in Fig. 3, so that the opacity band is now much wider, covering around 5 THz. This band is
also likely to widen further following a doubling of CO2, due to the slower decay of the absorption
spectrum associated with its triangular shape. As Fig. 6(c) shows, the transition from total opacity
to total transparency covers a much wider spectral band, giving rise to greater radiative forcing.
It is therefore the combination of molecular rotation and Fermi resonance that gives rise to CO2’s
major impact on climate.
The value obtained with this very simple model, 4.1 W/m2, is remarkably close to the exact value,
3.7 W/m2, obtained using much more elaborate climate models. Furthermore, the quasi-triangular
shape (in semi-logarithmic scale) of the CO2 absorption spectrum shown in Fig. 3 explains the well-
known logarithmic variation of radiative forcing as a function of CO2 concentration (for example
see courses Engineering sustainability, CCH_40002, and Energy and environment, PHY_51055).

1. D. Louapre, github.com/scienceetonnante/RadiativeForcing (2023).
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Multiplying the CO2 concentration by a factor of λ shifts the absorption spectrum upwards on the
semi-logarithmic graph by an amount proportional to log λ, which - given the triangular shape of
the spectrum - widens the opacity band by an amount also proportional to log λ. The increase in
energy absorbed by CO2 is therefore proportional to the logarithm of its concentration.
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