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Infrared spectrum of carbon dioxide
In 1896, physicist Svante Arrhenius published an article highlighting the climatic impact of carbon

dioxide (CO2), whose vibrations absorb part of the black body radiation emitted by the Earth. A few
years later, however, his theory was challenged by Knut Ångström, who argued that the atmosphere
is already completely opaque to the infrared wavelength absorbed by CO2. A variant of this argument
is still used today by climate change deniers. The argument put forward is that the concentration of
CO2 already present in the atmosphere is sufficient to absorb all the radiation emitted by the Earth
at the vibration frequency of the molecule, so that a further increase in CO2 will have no consequence
on the climate. While this claim is obviously erroneous, its refutation requires the use of a radiative
transfer model of the atmosphere based on precise knowledge of the shape of the infrared absorption
spectrum of CO2. This is the spectrum that will be studied in the following.

The interaction between a CO2 molecule and the oscillating electric field E⃗(t) = E⃗0 cosωt associated
with an infrared radiation of angular frequency ω can be treated using time-dependent perturbation
theory. It is recalled that this interaction can give rise to a transition between an initial state |i⟩ and a
final state |f⟩, provided that the frequency ω is very close to the transition frequency ωfi = (Ef−Ei)/ℏ.
The transition probability can then be written as

Pi→f ∝ | ⟨f | ˆ⃗µ · E⃗0 |i⟩ |2, (1)

where ˆ⃗µ is the electric dipole operator of the molecule.

Exercise 1
CO2 Vibration modes

CO2 is a linear triatomic molecule composed of two oxygen atoms (isotope 16
8O) located on either

side of the central carbon atom (isotope 12
6C), as shown in Fig. 1(a). Since the nuclear spins of the

considered isotopes are zero and the molecule is assumed to always be in its electronic ground state,
only the motion of the nuclei will be taken into account. The center of mass of the molecule, whose
motion is irrelevant for infrared absorption, will be assumed to be stationary and positioned at the
origin of the coordinate system. Finally, for this and the following exercise, the molecule will be assumed
to be oriented along the z axis.
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Figure 1 – (a) Equilibrium structure of the CO2 molecule. (b) Bending mode along
the x axis, with angular frequency ω1. (c) Bending mode along the y axis, with an-
gular frequency ω1. (d) Symmetric stretching mode (along the z axis), with angular
frequency ω2. (e) Antisymmetric stretching mode (along the z axis), with angular
frequency ω3.

Under these assumptions, the motion of the nuclei can be decomposed into four independent vibra-
tional modes, shown in Fig. 1, each described using a harmonic oscillator. First, there are two bending
modes : one along the x axis (b) and the other along the y axis (c), both associated with a two-
dimensional harmonic oscillator of angular frequency ω1. Second, there are two stretching modes, in
which the nuclei move along the z axis : the symmetric stretching mode (d), where the carbon nucleus
remains stationary while the two oxygen nuclei oscillate symmetrically about the origin. This mode
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is described as a one-dimensional harmonic oscillator with angular frequency ω2. Finally, there is the
antisymmetric stretching mode (e), in which the carbon nucleus moves in the opposite direction to
the two oxygen nuclei. This mode is described as a one-dimensional harmonic oscillator with angular
frequency ω3. The vibrational frequencies are given as ω1/(2π) ≈ 20.0 THz, ω2/(2π) ≈ 40.1 THz, and
ω3/(2π) ≈ 70.4 THz, where 1 THz = 1012 Hz.

1. We consider initially only the antisymmetric stretching mode, with angular frequency ω3. The
stretching is characterized by the real quantity ζ = zc − (z1 + z2)/2, where zc is the coordinate of the
carbon nucleus, and z1 and z2 are the coordinates of the oxygen nuclei. We work within the state space
E3 = L2(R) and introduce the annihilation operator

â3 =
1√
2

(√
mrω3

ℏ
ζ̂ + i

p̂ζ√
mrℏω3

)
, (2)

where ζ̂ and p̂ζ are the position and momentum observables. The quantity mr = 2mOmC/(2mO+mC)
is the reduced mass, with mO and mC being the masses of the oxygen and carbon nuclei, respectively.
The Hamiltonian associated with this vibrational mode can then be written as :

Ĥ3 = ℏω3

(
â†3â3 +

Î

2

)
, (3)

where Î is the identity operator. The eigenstates of Ĥ3 will be denoted as |n⟩, with n ∈ N. Recall the
values and degeneracies of the energy levels.

2. Using a numerical application, show that for this mode it is justified to consider that only the
ground state |0⟩ is populated at the temperature of the Earth’s atmosphere (T = 288K).

3. Show that the dipole operator associated with the antisymmetric stretching mode reads

ˆ⃗µ = µ3

(
â3 + â†3

)
u⃗z, (4)

where u⃗z is a unit vector along the z axis. Express the real quantity µ3 in terms of the problem’s
parameters and the partial charge δq carried by the carbon atom.

4. Using eq. 1, identify the only transition associated with the antisymmetric stretching mode that
can be excited by the infrared field and provide the corresponding transition frequency.

5. We now consider the symmetric stretching mode. What can be said about the dipole observable ˆ⃗µ
in this case ?

6. Comment Fig. 2, which represents the infrared absorption spectrum of CO2. Among the 4 vibration
modes considered above, which are relevant in the context of the climate impact of CO2 ?

0 500 1000 1500 2000
Wavenumber (cm 1)

0 10 20 30 40 50 60 70
Frequency (THz)

0

5

10

15

20

Ab
so

rp
tio

n 
(m

1 )

Figure 2 – Absorption spectrum of CO2 in the mid-infrared range, for a CO2 concen-
tration of 426 ppm in air at atmospheric pressure and at a temperature of T = 288K.
The dashed line represents, in arbitrary units, the black body emission spectrum for
T = 288K.
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7. It can be read from Fig. 2 that absorption α at angular frequency ω1 is approximately 4.8 m−1.
Knowing that the resulting transmission after propagation over a distance L is given by exp(−αL),
deduce the value of L required for the photon transmission probability to be less than 10−6. Comment
on this result.

Exercice 2
Fermi Resonance

This exercise deals with the bending motion shown in Fig. 1(b) and (c).

1. Two-dimensional harmonic oscillator
Given the small value of the bending angle, we can assume that the nuclei move within horizontal
planes. Let (x, y) represent the coordinates of the carbon nucleus relative to the projection of the two
oxygen nuclei in the xy-plane. We introduce the observables x̂ and ŷ associated with these coordinates,
as well as the corresponding momentum observables p̂x and p̂y. Operator âx (respectively ây) can then
be constructed using an equation similar to eq. 2, by replacing ω3 with ω1, and substituting ζ̂ and p̂ζ
with x̂ and p̂x (respectively ŷ and p̂y). We work in the state space E1 = L2(R2) = L2(R) ⊗ L2(R),
and the Hamiltonian of the system is expressed as Ĥ1 = Ĥx + Ĥy, where Ĥx = ℏω1

(
â†xâx + Î/2

)
and

Ĥy = ℏω1

(
â†yây + Î/2

)
.

1.1 Explain why Ĥx and Ĥy can be co-diagonalized, and show that the eigenvalues of Ĥ1 are En =
(n+ 1)ℏω1, with n ∈ N. Specify the associated denegeracies.

1.2 Let us introduce operators â± = (âx ∓ iây)/
√
2, which commute with each other and, along with

their adjoints, satisfy the usual commutation relations of annihilation and creation operators as-
sociated with a one-dimensional harmonic oscillator. Show that Ĥ1 = ℏω1

(
N̂+ + N̂− + Î

)
, where

N̂± = â†±â±. Recover with this alternative method the eigenvalues of Ĥ1 and their degeneracies.
1.3 We note K̂ = ℏ(N̂+ − N̂−) the projection of the angular momentum along the z-axis of the

molecule. Explain the physical reason why K̂ commutes with Ĥ1.
1.4 We consider the common eigenbasis of the ECOC {Ĥ1, K̂} for the eigenvalues (n+ 1)ℏω1 and kℏ,

which will simply be denoted as {|n, k⟩} throughout the rest of this text. Show that |n, k⟩ is an
eigenvector of N̂+ and N̂− for the eigenvalues n+ and n−, which will be expressed in terms of n
and k.

1.5 Show that k is an integer with the same parity as n and belonging to the interval [−n, n].
1.6 Show that â± |n, k⟩ ∝ |n− 1, k ∓ 1⟩ and â†± |n, k⟩ ∝ |n+ 1, k ± 1⟩.
1.7 In the rest of this exercise, we assume that the infrared field is polarized along the x axis. We

consider the Cartesian component along this axis of the dipole operator, µ̂x = δq x̂. Express µ̂x in
terms of the operators â± and their adjoints, and then show that if the system is initially in the
state |n, k⟩, the infrared field can induce a transition to final state |n′, k′⟩ only if n′ = n ± 1 and
k′ = k ± 1.
We will say that the transition follows the selection rule ∆n = ±1 and ∆k = ±1.

2. Anharmonic coupling between vibrational modes
We are interested in the anharmonic coupling between the bending modes and the symmetric stretching
mode, a coupling that is exacerbated by what is called a Fermi resonance. This results from the near-
equality between 2ω1/(2π) = 40.0 THz and ω2/(2π) = 40.1 THz. For simplicity, we will replace ω2 by
2ω1 in this part. Moreover, the antisymmetric stretching mode will not be considered, which amounts
to working in the space E1⊗E2 = L2(R2)⊗L2(R). We will use the tensorial basis {|n1, k;n2⟩ = |n1, k⟩⊗
|n2⟩}, where {|n1, k⟩} is the common eigenbasis of Ĥ1 and K̂ introduced in the previous part (with
k ∈ {−n1,−n1+2, · · · , n1}), and where {|n2⟩} is the eigenbasis of the Hamiltonian Ĥ2 of the harmonic
oscillator with frequency ω2 = 2ω1 associated with the symmetric stretching mode. The anharmonic
coupling will be taken into account with an additional term Ŵ to be added to the unperturbed
Hamiltonian Ĥ1 + Ĥ2. The effect of Ŵ will be treated at first order in time-independent perturbation
theory. By symmetry, we will assume that all diagonal terms of the form ⟨n1, k;n2| Ŵ |n1, k;n2⟩ are
zero.
2.1 Write the action of Ĥ1+ Ĥ2 on |n1, k;n2⟩, then express the energy of the first three levels in terms

of ℏω1 (in the absence of perturbation). For each level, provide the vectors of the tensorial basis
that generate the corresponding eigenspace.
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2.2 By proceeding as in question 2 of exercise 1, show that the probability of finding the system in the
first excited state is not completely negligible.

2.3 Explain why operator K̂ commutes with Ŵ .
2.4 Calculate ⟨n1, k;n2| [Ŵ , K̂] |n′

1, k
′;n′

2⟩ in two different ways, and then deduce that the matrix
elements ⟨n1, k;n2| Ŵ |n′

1, k
′;n′

2⟩ are zero whenever k ̸= k′.
2.5 Show that Ŵ has no effect on the first two energy levels (as first order).
2.6 We now consider the effect of Ŵ on the third energy level, still to first order in perturbation

theory. By appropriately ordering the basis vectors, show that the matrix to be considered is
block-diagonal, then determine the new position of the energy levels as well as the corresponding
eigenbasis. We will denote ℏΩ = ⟨2, 0; 0| Ŵ |0, 0; 1⟩, a quantity which will be assumed to be real.

2.7 Represent on a diagram the position of the states discussed in 2.5 and 2.6, taking into account the
effect of the perturbation Ŵ . For each state, the horizontal position of the level will correspond
to the value of k, while the vertical position of the level will correspond to its energy. Using the
selection rules established in 1.7, represent with arrows the transitions allowed under the action of
the infrared field.

2.8 The absorption spectrum of CO2 near the frequency ω1 is shown in Fig. 3. Here, we focus only
on the main lines indicated by vertical dashed lines (the interpretation of the much narrower lines
appearing on either side of these main lines will be addressed in the next exercise). Using the
energy level diagram constructed in the previous question, interpret the physical origin of the lines
observed at 20, 18.5, and 21.6 THz. Does the order of magnitude of the amplitude of the latter
two lines seem consistent with the theoretical model ?

2.9 Propose a hypothesis to qualitatively explain the physical origin of the lines observed at 16.3 and
23.7 THz.
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Figure 3 – Semi-logarithmic plot of the absorption spectrum of CO2 in the vicinity
of frequency ω1.

Exercice 3
Ro-vibrational spectrum of CO2

The purpose of this exercise is to take into account the rotational motion of the CO2 molecule, in
order to achieve a complete description of its infrared spectrum.

1. Rigid rotor model
We first consider the rigid rotor model, which disregards the vibrations of the molecule. The only
remaining degrees of freedom are then associated with the orientation of the molecule in space, described
using spherical coordinates θ and φ as shown in Fig. 4. The axis of the molecule is thus represented
by the unit vector u⃗, defined by the usual expression :

u⃗ =

∣∣∣∣∣∣
sin θ cosφ
sin θ sinφ
cos θ

(5)
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Figure 4 – Representation of the CO2 molecule, assumed to be a rigid rotor whose
orientation is determined by the colatitude θ ∈ [0, π] and the longitude φ ∈ [0, 2π[.

We consider the Hilbert space Erot, where the state of the system is entirely determined by a ket
|Y ⟩ ∈ Erot associated with the angular wavefunction Y (θ, φ). The inner product reads

⟨Y1|Y2⟩ =
∫ π

0

∫ 2π

0
Y ∗
1 (θ, φ)Y2(θ, φ) sin θ dθdφ. (6)

The Hamiltonian associated with the rotational motion of the molecule is written as

Ĥrot =
L̂2

2I
= ℏB

L̂2

ℏ2
, (7)

where ˆ⃗
L is the angular momentum operator and I is the moment of inertia of the molecule. The

quantity B = ℏ/(2I) is called the rotational constant of the molecule.

1.1 In the following, we will use the eigenbasis {|ℓ,m⟩} of L̂2 and L̂z, consisting of the spherical
harmonics Yℓ,m(θ, φ), with ℓ ∈ N. Recall the eigenvalues of L̂2 as well as the possible values of m.

1.2 Using the rotational constant B, express the energy values Eℓ of the system, and the associated
degeneracies.

1.3 Show in two different ways that the oxygen nuclei considered here are bosons.
1.4 Exchanging the two nuclei is equivalent to performing a central symmetry with respect to the

origin, which is described by the parity operator Π̂. Knowing that Π̂ |ℓ,m⟩ = (−1)ℓ |ℓ,m⟩, what
can we deduce about the allowed values of ℓ when taking into account the indistinguishable nature
of the oxygen nuclei ?

1.5 In the context of the rigid rotor model, do you think the CO2 molecule can absorb electromagnetic
radiation ?

2. Ro-vibrational spectrum associated with the antisymmetric stretching mode
We now combine rotational and vibrational motions. For sake of simplicity, we will consider just one
mode of vibration, namely the antisymmetric stretching mode with frequency ω3. We are therefore in
the state space E3⊗Erot, where E3 = L2(R). The vibrational mode considered is that shown in Fig. 1(e),
except that the molecule is now aligned according to the vector u⃗ introduced above. Consequently, eq. 4
expressing the dipole operator must be replaced by

ˆ⃗µ = µ3(â3 + â†3)
ˆ⃗u, (8)

where â3 acts in E3 while ˆ⃗u is now an observable acting in Erot. The Hamiltonian of the system is
written Ĥ = Ĥ3 + Ĥrot, where Ĥ3 is defined by eq. 3 and Ĥrot is defined by eq. 7.

2.1 Write the energy value En,ℓ associated with eigenstate |n⟩ ⊗ |ℓ,m⟩.
2.2 Recall without calculation the parity of the eigenfunctions of the one-dimensional harmonic oscil-

lator, then deduce the action of the operator exchanging the two oxygen nuclei on state |n⟩⊗|ℓ,m⟩.
2.3 Deduce the permitted values for ℓ depending on the values taken by n.
2.4 It is assumed that at room temperature the system can be randomly in one of the states |0⟩⊗|ℓ,m⟩,

where ℓ satisfies the condition obtained in the previous question. Calculate the matrix element
⟨n′| ⊗ ⟨ℓ′,m′| ˆ⃗µ · E⃗0 |0⟩ ⊗ |ℓ,m⟩, where it will be assumed that the electric field E⃗0 is aligned along
the z axis, then identify the |n′⟩ ⊗ |ℓ′,m′⟩ states accessible following interaction with infrared
radiation.
You will need to use the relation

Yℓ,m(θ) cos θ = αℓ,mYℓ+1,m(θ) + βℓ,mYℓ−1,m(θ), (9)

where αℓ,m and βℓ,m are known real coefficients whose explicit expression as a function of ℓ and m
will not be necessary. We obviously have βℓ,ℓ = 0.
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2.5 Express as a function of ω3 and B the corresponding energy differences, En′,ℓ′ −E0,ℓ, according to
the allowed values of ∆ℓ = ℓ′ − ℓ.

2.6 Using the previous results, discuss the infrared spectrum shown in Fig. 5. You can
• explain qualitatively the general shape of the absorption spectrum,
• deduce from the spectrum the numerical values of B and the length of the CO bond,
• explain the growth and decay of the spectrum envelope away from the central frequency (assu-

ming for sake of simplicity that αℓ,m and βℓ,m are independent of ℓ and m),
• discuss features not predicted by the simplified theoretical model developed in this exercise.
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Figure 5 – Infrared absorption spectrum of CO2 near the frequency ω3.

3. Ro-vibrational spectrum associated with bending modes
This final section uses some of the results demonstrated in Exercise 2.

We now combine the rotational motion with the two bending modes of frequency ω1 (this time neglec-
ting the stretching modes). The theoretical treatment is considerably more complicated, since both
rotational and bending motions contribute to the total angular momentum ˆ⃗

L of the molecule. We
assume that ˆ⃗

L commutes with its projection K̂ =
ˆ⃗
L · ˆ⃗u = ˆ⃗u · ˆ⃗L along the u⃗ axis of the molecule. We also

admit that this projection corresponds to the angular momentum K̂ already studied in exercise 2. The
projection of the angular momentum in the plane perpendicular to the axis of the molecule is called
ˆ⃗
L⊥ =

ˆ⃗
L− K̂ ˆ⃗u. The Hamiltonian is now written

Ĥ = Ĥ1 + ℏB
L̂2
⊥

ℏ2
, (10)

where B is the rotational constant introduced above. The observables Ĥ1, K̂, L̂2 and L̂z commute with
each other and can be diagonalized in the common eigenbasis {|n, k; ℓ,m⟩}, with the same eigenvalues
as those obtained in part 1 of exercise 2 and part 1 of this exercise. However, given the more complex
motion of the molecule, the corresponding wave functions are no longer proportional to the spherical
harmonics Yℓ,m(θ, φ), so the selection rules established in 2.4 are modified. We admit that infrared
transitions are now possible for ∆ℓ = −1, 0, or + 1.
3.1 Knowing that L̂2 = L̂2

⊥+ K̂2, show that |n, k; ℓ,m⟩ is an eigenvector of L̂2
⊥ for an eigenvalue to be

determined, then deduce the expression of the energy En,k,ℓ associated with Ĥ.
3.2 The electric field associated with the infrared radiation is assumed to be polarized along the z

axis. Explain why µ̂z commutes with L̂z, then deduce that an infrared transition must respect the
selection rule ∆m = 0.

3.3 Consider a transition from state |0, 0; ℓ,m⟩ to state |1, k; ℓ+∆ℓ,m⟩. Recall the possible values
of k, then deduce the transition frequencies in the three cases ∆ℓ = −1, 0 or 1. Based on these
results, interpret the part of the spectrum shown in Fig. 3 located between 19 and 21 THz.

3.4 Using the results obtained in the previous exercise, explain the general shape of the spectrum
shown in Fig. 3.

3.5 Figure 6 represents the infrared spectrum emitted by the Earth into space (also called spectral
emittance), calculated using a simplified radiative transfer model 1. The emission spectra, repre-

1. D. Louapre, github.com/scienceetonnante/RadiativeForcing (2023).
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sented near ω1, are based on three models of CO2 absorption spectra : the first (a) only considers
the vibration at ω1, the second (b) includes molecular rotations but does not account for Fermi
resonance, while the third (c) uses the spectrum shown in Figure 3, which also includes the Fermi
resonance studied in Exercise 2. The additional absorbed power (called radiative forcing) due to a
doubling of the CO2 concentration according to these three models is respectively (a) 0.1, (b) 1.8,
and (c) 4.1 W/m2. Comment on these results using Figures 3 and 6 and then conclude.
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Figure 6 – Representation of the Earth’s spectral emittance near ω1 for a CO2

concentration of 280 ppm (dotted line) and 560 ppm (solid line). The theoretical
model considers only the vibration at ω1 (a), vibrations and rotations without (b) or
with (c) Fermi resonance. The dashed lines represent the blackbody emission spectrum
for temperatures of 288 K (upper curve) and 216 K (lower curve). The latter value
corresponds to the temperature at the top of the atmosphere.
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